首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   66篇
  国内免费   201篇
测绘学   1篇
大气科学   282篇
地球物理   21篇
地质学   26篇
海洋学   87篇
天文学   2篇
综合类   6篇
自然地理   22篇
  2024年   1篇
  2023年   7篇
  2022年   10篇
  2021年   13篇
  2020年   22篇
  2019年   16篇
  2018年   19篇
  2017年   18篇
  2016年   13篇
  2015年   12篇
  2014年   22篇
  2013年   33篇
  2012年   24篇
  2011年   28篇
  2010年   16篇
  2009年   24篇
  2008年   14篇
  2007年   24篇
  2006年   15篇
  2005年   16篇
  2004年   12篇
  2003年   16篇
  2002年   11篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   11篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1988年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有447条查询结果,搜索用时 36 毫秒
1.
Coastal boulder fields provide clues to long-term frequency-magnitude patterns of coastal flooding events and have the potential to play an important role in coastal hazard assessment. Mapping boulders in the field is time and labour-intensive, and work on intertidal reef platforms, as in the present study, is physically challenging. By addressing coastal scientists who are not specialists in remote sensing, this contribution reports on the possibilities and limitations of digital applications in boulder mapping in Eastern Samar, Philippines, where recent supertyphoons Haiyan and Hagupit induced high waves, coastal flooding and boulder transport. It is demonstrated how satellite imagery of sub-metre resolution (from Pléiades and WorldView-3 imagery) enables efficient analysis of transport vectors and distances of larger boulders, reflecting variation in latitudes of both typhoon tracks and approaching angles of typhoon-generated waves. During the investigated events, boulders with a-axes of up to 8 m were clearly identified to have been shifted for up to 32 m, mostly along the seaward margin of the boulder field. It is, however, hard to keep track of smaller boulders, and the length of a-axes and b-axes including their orientation is often impossible to map with sufficient accuracy. Orthophotographs and digital surface models created through the application of an unmanned aerial vehicle and the ‘Structure from Motion’ technique provide ultra-high-resolution data, and have the potential to not only improve the results of satellite image analysis, but also those from field mapping and may significantly reduce overall time in the field. Orthophotographs permit unequivocal mapping of a-axes and b-axes including their orientation, while precise values for c-axes can be derived from the respective digital surface models. Volume of boulders is best inferred from boulder-specific Structure from Motion-based three-dimensional models. Battery power, flight speed and altitude determine the limits of the area covered, while patches shielded by the boulders are difficult to resolve. For some tasks, field mapping remains mandatory and cannot be replaced by currently available remote sensing tools: for example, sampling for rock type, density and age dating, recording of lithological separation of boulders from the underlying geological unit and of geomorphic features on a millimetre to decimetre-scale, or documentation of fine-grained sediment transport in between the boulders in supratidal settings. In terms of future events, the digital products presented here will provide a valuable reference to track boulder transport on a centimetre to decimetre-scale and to better understand the hydrodynamics of extreme-wave events on a fringing reef coastline.  相似文献   
2.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
3.
Combining a linear regression and a temperature budget formula, a multivariate regression model is proposed to parameterize and estimate sea surface temperature(SST) cooling induced by tropical cyclones(TCs). Three major dynamic and thermodynamic processes governing the TC-induced SST cooling(SSTC), vertical mixing, upwelling and heat flux, are parameterized empirically using a combination of multiple atmospheric and oceanic variables:sea surface height(SSH), wind speed, wind curl, TC translation speed and surface net heat flux. The regression model fits reasonably well with 10-year statistical observations/reanalysis data obtained from 100 selected TCs in the northwestern Pacific during 2001–2010, with an averaged fitting error of 0.07 and a mean absolute error of 0.72°C between diagnostic and observed SST cooling. The results reveal that the vertical mixing is overall the pre dominant process producing ocean SST cooling, accounting for 55% of the total cooling. The upwelling accounts for 18% of the total cooling and its maximum occurs near the TC center, associated with TC-induced Ekman pumping. The surface heat flux accounts for 26% of the total cooling, and its contribution increases towards the tropics and the continental shelf. The ocean thermal structures, represented by the SSH in the regression model,plays an important role in modulating the SST cooling pattern. The concept of the regression model can be applicable in TC weather prediction models to improve SST parameterization schemes.  相似文献   
4.
Several studies on tropical cyclone genesis potential index (GPI) mainly using atmospheric parameters (relative/absolute vorticity, relative humidity, vertical wind shear, potential instability, vertical velocity etc.) have been reported earlier. Though the ocean plays a vital role in the genesis and intensification of cyclones, no ocean parameter has been included in most of the studies. In this study, we have made an attempt to develop a new GPI for Bay of Bengal during peak post-monsoon (October-November) season including upper ocean heat content (UOHC) using the data for the period 1995–2015. It is found that the new GPI is better correlated with the total number of depressions, cyclones and severe cyclones (TNDC) compared with the existing GPI which was developed for the north Indian Ocean and presently used by India Meteorological Department (IMD), New Delhi. The correlation has significantly enhanced (r=0.86:significant at >99% level) by using the first differences [year(0) –year(?1)] of the time series data. Since, the new GPI which considers atmosphere and ocean (UOHC) parameters, it appears to be more suitable for Bay of Bengal during the peak post-monsoon season.  相似文献   
5.
Diabatic heating by convection in the eyewall often produces an annular region of high potential vorticity (PV) around the relatively low PV eye in a strong tropical cyclone (TC). Such a PV ring is barotropically unstable and can encourage the exponential growth of PV waves. In this study, such instability and the subsequent nonlinear evolution of three TC-like vortices having PV rings with different degrees of hollowness on an f-plane are first examined using an unforced, inviscid shallow-water-equation model. Results show that the simulated eyewalls evolve similarly to those in the nondivergent barotropic model. It is also found that the polygonal eyewall structure can be decomposed into vortex Rossby waves (VRWs) of different wavenumbers with different amplitudes, allowing for wave-wave interactions to produce complicated behaviors of mesovortices in the TC eyewall. The same set of PV rings has been examined on a beta-plane. Although the beta effect has been rendered unimportant to the eyewall evolution due to the relatively small scale of the inner-core circulation, this study shows that the beta effect may erode the coherent structure of mesovortices in the eyewall of an initially hollow PV-ring vortex. Mesovortices modeled on the beta-plane with a greater beta parameter tend to experience an earlier breakdown and enhanced radial gradients of the basic-state (azimuthally mean) angular velocity, followed by wave-wave, wave-flow interactions, leading to earlier merger and axisymmetrization processes. This result implies that the beta effect could be one of the forcings that shorten the lifetime of quasi-steady mesovortices in the eyewall of real TCs.  相似文献   
6.
An explosive extratropical cyclone(EC)over the Eastern Asian region that caused two shipwrecks is analyzed using ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts.Analyses of the evolution of the EC reveal that the positive potential vorticity(PV)at the upper-tropospheric level displays a hook-shaped structure during the mature period of the cyclone.The PV distribution forms a vertically coherent PV structure called a PV tower.The vertical distribution of the PV can induce and strengthen cyclonic circulation from the lower-to upper-levels of troposphere,which is an important deepening mechanism of explosive cyclone.The PV tower occurs approximately ten hours prior to the development of surface occlusion in the cyclone.The evolution of surface fronts closely follows the development of the horizontal upper-tropospheric PV.This tandem development is largely attributed to the ability of the positive upper-tropospheric PV and the PV tower to induce cyclonic circulation simultaneously.The kinematic wrap-up process of cyclonic circulation also accelerates the formation of warm occlusion.A conceptual model of the distributions of positive PV and potential temperature combining the perspectives of dynamic tropopause folding,PV tower,and atmospheric stability,including westward tilting and baroclinicity,is proposed.This model can illustrate the explosive deepening mechanism of ECs.The regions of convective instability and rainfall determined by this model are consistent with those identified from the actual observation.  相似文献   
7.
使用中国气象局热带气旋资料中心的热带气旋最佳路径数据集和NCEP/NCAR再分析资料提供的月平均数据,对北上影响山东的热带气旋(tropical cyclone,TC)及其造成的极端降水进行统计分析,并揭示了有利于 TC北移影响山东的大气环流特征。结果表明:影响山东的 TC主要出现 于 6—9 月,其中盛夏时节(7、8 月)TC对山东影响最大;TC影响山东时,强度主要为台风及以下等 级,或已发生变性;TC会引发山东极端降水事件,TC极端降水多出现在夏秋季(7—9 月),其中8月的占比最大,9月次之,TC降水在极端降水事件中的占比约为 10%,但年际变化大,有些年份占比达60%以上,特别是1990 年以来 TC对极端降水的贡献显著增强;影响山东的 TC主要生成于西 北太平洋,多为转向型路径;当500 hPa位势高度异常场呈太平洋一日本遥相关型的正位相时,TC更易北上影响山东,此时西北太平洋副热带高压位置偏北,其外围气流会引导TC北上转向,对华东地区造成影响;850 hPa上,南海至西北太平洋存在异常气旋式环流,对流活跃,夏季风环流和季风槽加强,有利于TC的生成和发展,同时,华东、华南上空有异常上升运动,涡度增大,垂直风切变减小,水汽充沛,TC登陆后强度能得到较好的维持。  相似文献   
8.
利用非静力中尺度WRF模式模拟的台风Chanchu(0601)的输出资料,探讨了Chanchu减弱变性过程的强度及结构变化。分析结果表明:在台风Chanchu北移过程中,高层的暖心被破坏,强度快速减弱,眼壁对流发展高度降低,眼壁对流由对称结构演变为非对称,内核对流减弱。此减弱变性过程与惯性稳定度减小、垂直风切变增强、低层锋生等环境要素有关。惯性稳定度与台风强度变化一致,随着惯性稳定度降低,最大切向风减弱并不断外扩,Rossby变形半径增大从而潜热释放不集中难以维持台风强度,台风减弱;同时,内核区的高层暖心更易径向频散,从而高层暖心难以维持;环境的垂直风切变增强使台风的斜压性增强,台风垂直结构的倾斜度增大,对流发展高度降低;低层冷空气侵入台风中心趋于填塞,也利于台风强度减弱;台风登陆以后冷暖空气对比导致的锋生使得不稳定能量释放从而重新加强了Chanchu环流内的中低层对流活动,但较台风最强时刻而言对流强度减弱。总体减少的对流和降低的对流高度,导致潜热能释放减小,其向心输送也减少,不足以维持强暖心结构,最终使得台风减弱并变性。   相似文献   
9.
刘凡  陈华 《气象科学》2019,39(5):666-674
本文利用中尺度数值模式WRF和LAGRANTO轨迹模式对2010年变性台风"Malakas"进行数值模拟和轨迹分析,分析了Malakas在变性过程中与中纬度系统的相互作用,以及在相互作用过程中Malakas的结构变化特征。结果表明:Malakas变性过程经历了三个阶段:(1)高层扰动加强期,高层的正位涡产生的气旋性环流使低层Malakas中心北部的斜压带西侧产生负的温度平流,表现为冷空气的入侵;(2)Malakas和中纬度系统相互作用时期,台风北上导致斜压带出现,深对流的爆发使低层暖湿气流沿着斜压带上升,快速上升气流中的潜热释放导致低PV空气向对流层上部净输送,在其北部高层重新构建出一个脊;(3)Malakas变性成温带气旋,残存的台风内核与斜压带逐渐合并,负的位涡平流带着非绝热外出流驱动了下游最初脊的构建,加速并且固定了中纬度急流,并整体放大了上层Rossby波模式。  相似文献   
10.
利用1981—2016年7—10月中国753站逐日降水资料、气象信息综合分析处理系统(MICAPS)逐日站点降水资料、日本东京台风中心西北太平洋热带气旋(TC)最佳路径资料和NCEP/NCAR再分析资料集,分析了华南地区区域性日降水极端事件(RDPE事件)的统计特征及环流异常。根据华南地区RDPE事件的发生是否受热带气旋影响将其分为TCfree-RDPE和TCaff-RDPE两类事件,其中TCaff-RDPE事件占42%且集中发生在8月4—5候;TCfree-RDPE事件以7月发生频数最多,占其总频次的1/2以上。TCfree-RDPE事件发生时,华南地区受异常气旋性环流控制,来自西太平洋和中国南海的暖湿气流与北方冷气团在此汇合并形成一条狭长的水汽辐合带,低层辐合、高层辐散,显著强烈的上升运动为TCfree-RDPE事件的发生与维持提供了有利条件;与此同时,波扰动能量由高原东北侧及河西走廊地区向华南一带传播并在华南显著辐合,有利于华南上空扰动的发展和维持。TCaff-RDPE事件发生时,华南上空由低层到高层的斜压环流结构更为明显,异常上升运动更加强烈,热带气旋在其运动过程中携带了大量源自孟加拉湾、中国南海和西太平洋地区的水汽并输送至华南地区,水汽辐合气流更为强盛。同时,波扰动能量由高纬度地区沿河西走廊向下游传播,但在华南地区辐合不甚明显。两类极端事件发生时,加热场上的差异亦明显。华南及邻近地区上空的大气净加热及其南侧大范围区域的净冷却所形成的加热场梯度对TCfree-RDPE事件的发生有利。而TCaff-RDPE事件发生时,〈Q1〉和〈Q2〉在经向上由18°N以南、华南及其邻近地区、32°N以北呈负—正—负的异常分布型,正距平值更高,加热场梯度更大,有利于TCaff-RDPE事件的维持。这些结果有利于人们认识和预测华南区域性日降水极端事件的发生。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号